Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Sci Total Environ ; 923: 171402, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431176

RESUMEN

China has a large fastest-aging population, which would reshape household consumption patterns and influence global CO2 emissions. This study examines global CO2 emissions driven by household consumption (i.e., household carbon footprints, HCFs) of 34 age groups in China's 30 provinces and uncovers relevant socioeconomic influencing factors. Results show that China's population aging (i.e., the proportion of the elderly population) is conducive to global CO2 emission reduction during 2011-2014. This trend is mainly due to the relatively lower per capita HCFs of the elderly (1.7 t in 2014). In contrast, the per capita HCFs of the youth group are higher (3.3 t in 2014), mainly affected by the large expenditure on residence and transportation & communication. In addition, the HCFs of all age groups have increased during 2011-2014. Per capita expenditure is the most significant driver of this increase. The decline in CO2 emission intensity makes the largest contribution to reducing the HCFs of the youth group. For the aged group, expenditure structure change is the largest contributor to HCFs reduction. These findings reveal the differentiated impacts of China's household consumption by age on global CO2 emissions. This study lays the scientific foundation for deriving amelioration policies and achieving emission reduction targets in the process of population aging.


Asunto(s)
Dióxido de Carbono , Huella de Carbono , Anciano , Humanos , Adolescente , Dióxido de Carbono/análisis , China , Factores Socioeconómicos , Desarrollo Económico , Carbono
2.
Environ Sci Technol ; 58(13): 5811-5820, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502088

RESUMEN

Enhancing the cooling effectiveness of green spaces (GSs) is crucial for improving urban thermal environments in the context of global warming. Increasing GS coverage and optimizing its spatial distribution individually proved to be effective urban cooling measures. However, their comparative cooling effectiveness and potential interaction remain unclear. Here, using the moving window approach and random forest algorithm, we established a robust model (R2 = 0.89 ± 0.01) to explore the relationship between GS and land surface temperature (LST) in the Chinese megacity of Guangzhou. Subsequently, the response of LST to varying GS coverage and its spatial distribution was simulated, both individually and in combination. The results indicate that GS with higher coverage and more equitable spatial distribution is conducive to urban heat mitigation. Increasing GS coverage was found to lower the city's average LST by up to 4.73 °C, while optimizing GS spatial distribution led to a decrease of 1.06 °C. Meanwhile, a synergistic cooling effect was observed when combining both measures, resulting in additional cooling benefits (0.034-0.341 °C). These findings provide valuable insights into the cooling potential of GS and crucial guidance for urban green planning aimed at heat mitigation in cities.


Asunto(s)
Calor , Parques Recreativos , Ciudades , Temperatura , Monitoreo del Ambiente/métodos
3.
Sci Total Environ ; 924: 171508, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38460682

RESUMEN

Fast fashion is driving the continued growth of the fashion industry's carbon emissions. Understanding how fast fashion consumption exacerbates carbon emissions is critical to guide mitigation strategies for the fashion industry. Taking jeans, a typical fast fashion product as an example, this study developed an LCA model to assess the carbon footprint of fast fashion consumption at global and national levels, and mitigation potentials of product service systems-related scenarios were then explored. Results show that the carbon footprint of fast fashion consumption is 2.50 kgCO2e/one wear jeans, 11 times higher than that of traditional fashion consumption. Jeans production and cross-broad transportation contributed 91 % of the carbon footprint of fast fashion consumption. Developed countries have a 53 % higher per capita carbon footprint of fast fashion consumption than developing countries. The second-hand trading model has the highest mitigation potential, reducing carbon emissions by 90 %. This study proposed an analytical framework for the carbon footprint of fast fashion consumption, which provides the basis for the environmental footprints of fast fashion products. Our findings provide insights into the carbon footprints of traditional and fast fashion consumption and strategies for the transition to circular fashion.

4.
Environ Int ; 185: 108483, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382402

RESUMEN

Biodegradable plastic, a widely used ecofriendly alternative to conventional plastic, easily form nanoplastics (NPs) upon environmental weathering. However, the effects and underlying mechanisms governing the toxicity of photoaged biodegradable NPs to aquatic insects are not understood. In this study, we investigated the photoaging of polylactic acid nanoplastics (PLA-NPs, a typical biodegradable plastic) that were placed under xenon arc lamp for 50 days and 100 days and compared the toxicity of virgin and photoaged PLA-NPs to Chironomus kiinensis (a dominant aquatic insect). The results showed that photoaged PLA-NPs significantly decreased the body weight, body length and emergence rate of C. kiinensis. Additionally, photoaged PLA-NPs induced more severe gut oxidative stress, histological damage, and inflammatory responses than virgin PLA-NPs. Furthermore, the alpha diversity of gut microbiota was lower in photoaged PLA-NPs group than virgin PLA-NPs. The relative abundance of key gut bacteria related to intestinal barrier defense, immunity, and nutrient absorption was reduced more significantly in photoaged PLA-NPs group than virgin PLA, indirectly leading to stronger gut damage and growth reduction. A stronger impact of photoaged PLA-NPs on the gut and its microbiota occurred because photoaging reduced the size of NPs from 255.5 nm (virgin PLA) to 217.1 nm (PLA-50) and 182.5 nm (PLA-100), induced surface oxidation and enhancement of oxidative potential, and improved the stability of NPs, thereby exacerbating toxicity on the gut and its microbiota. This study provides insights into the effects of biodegradable NPs on aquatic insects and highlights the importance of considering biodegradable nanoplastic aging in risk assessments.


Asunto(s)
Plásticos Biodegradables , Chironomidae , Microbioma Gastrointestinal , Envejecimiento de la Piel , Contaminantes Químicos del Agua , Animales , Microplásticos , Insectos , Poliésteres/toxicidad , Plásticos , Contaminantes Químicos del Agua/toxicidad
5.
Nat Commun ; 15(1): 1178, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331994

RESUMEN

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.


Asunto(s)
Ecosistema , Pradera , Suelo , Carbono , Cambio Climático
6.
ACS Nano ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323841

RESUMEN

Persistent organic pollutants (POPs) have been widely suggested as contributors to the aquatic insect biomass decline, and their bioavailability is affected by engineered particles. However, the toxicity effects of emerging ionizable POPs mediated by differentially charged engineered nanoparticles on aquatic insects are unknown. In this study, 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B, an emerging perfluoroalkyl acid alternative) was selected as a model emerging ionizable POP; the effect of differentially charged nanoplastics (NPs, 50 nm, 0.5 g/kg) on F-53B bioaccumulation and gut toxicity to Chironomus kiinensis were investigated through histopathology, biochemical index, and gut microbiota analysis. The results showed that when the dissolved concentration of F-53B remained constant, the presence of NPs enhanced the adverse effects on larval growth, emergence, gut oxidative stress and inflammation induced by F-53B, and the enhancement caused by positively charged NP-associated F-53B was stronger than that caused by the negatively charged one. This was mainly because positively charged NPs, due to their greater adsorption capacity and higher bioavailable fraction of associated F-53B, increased the bioaccumulation of F-53B in larvae more significantly than negatively charged NPs. In addition, positively charged NPs interact more easily with gut biomembranes and microbes with a negative charge, further increasing the probability of F-53B interacting with gut biomembranes and microbiota and thereby aggravating gut damage and key microbial dysbacteriosis related to gut health. These findings demonstrate that the surface charge of NPs can regulate the bioaccumulation and toxicity of ionizable POPs to aquatic insects.

7.
Opt Lett ; 49(3): 626-629, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300075

RESUMEN

A compact underwater lidar system, utilizing a single-photon detection technology, is proposed to effectively eliminate interference from the sea-air interface and enhance the accuracy of water optical property measurements. However, the high sensitivity of the single-photon detector poses challenges, including daytime operation difficulties due to strong solar radiation noise and detector saturation from near-field lidar signals. To address these issues, the laser and optical receiver of the lidar are optimized to suppress solar radiation noise, and a dual-telescope structure is introduced to improve the dynamic measurement range beyond 70 dB. In addition, a Monte Carlo simulation establishes the relationship between beam attenuation coefficients (c) and lidar attenuation coefficients (Klidar), enabling the retrieval of c profiles from Klidar. A field experiment conducted in the South China Sea, spanning from inshore to offshore waters, demonstrates the effectiveness of the lidar. The results highlight its potential applications, including the assessment of subsurface particulate organic carbon (POC).

8.
Sci Total Environ ; 913: 169768, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38176545

RESUMEN

The globally massive land-use changes associated with unprecedented urbanization rate are leading to prodigious quantities of carbon emissions. Nonetheless, the dynamics of land-use carbon emissions, particularly driven by supply-chain activities across all relevant industrial sectors, remain largely unexplored, especially in non-agricultural sectors. Here, we constructed a novel methodological framework to quantify full-sector land-use carbon emissions in Shenzhen, China, an international megacity grappling with acute land resource scarcity. Then, we integrated this framework with multiregional input-output analysis to uncover the multi-scale embodied land-use emissions propelled by Shenzhen's supply-chain activities. Our results indicate a marked increase in Shenzhen's embodied carbon emissions, approximately two orders of magnitude greater than its physical emissions, tripling during 2005-2018. Remarkably, non-agriculture sectors contributed 81.3-90.5 % of physical and 46.6-58.4 % of embodied land-use emissions. The land-use changes occurred outside Shenzhen accounted for 6.5-13.3 % of Shenzhen's total embodied land-use emissions. The sectoral analysis revealed a transition from traditional manufacturing (e.g., metallurgy, chemical products, textiles, wood products) in 2010-2015 to high-tech sectors (e.g., electronic equipment and other manufacture) in 2015-2018. This shift was primarily attributed to concurrent industry transfer actions, leading to aggressive changes in land-use emission intensity discrepancies within and outside Shenzhen. This study provides a scientific basis for designing effective strategies to mitigate land-use carbon emissions associated with supply-chain activities.

9.
Sci Total Environ ; 912: 169001, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040353

RESUMEN

Ecological restoration is one of the most feasible ways to mitigate climate change and conserve ecosystems. However, the scope, intensity, effectiveness, and future potential of ecological restoration are restricted by unfavorable environmental conditions, especially limited water resources and complex topography. This paper proposes an assessment framework of ecological restoration potential under the coupled limits of water resources and slope gradient to quantitatively assess ecological restoration potential (ERP) under these two limiting factors. Results indicate that the current vegetation plantation in 20%, 0.19% and 32% areas of China's 31 provinces are larger, equal, and lower than the vegetation threshold permitted by local water resources respectively, which represents about 0.299 billion ha potential for additional restoration area. The ecological restoration potential under the integrated water resources and slope gradient constraints is 0.4 Pg C, less than half (47%) of the potential under the single limit of water resources (0.856 Pg C). However, this potential and China's existing carbon sink capacity related to terrestrial ecosystems is estimated to offset up to 8% of its current carbon dioxide emissions. Ecological restoration programs in areas with slope >5° will require additional economic investment to support Soil and Water Conservation programs, estimated to average about 212 trillion yuan. Succinctly, it is critical to integrate field investigations, process-based assessments and landscape design for sustainable ecological restoration. This work can provide techniques support for quantitative measurement of ecological restoration potential considering multiple limiting factors and guidance for sustainable implementation of ecological restoration programs.

10.
J Environ Manage ; 351: 119972, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159308

RESUMEN

Biodiversity datasets with high spatial resolution are critical prerequisites for river protection and management decision-making. However, traditional morphological biomonitoring is inefficient and only provides several site estimates, and there is an urgent need for new approaches to predict biodiversity on fine spatial scales throughout the entire river systems. Here, we combined the environmental DNA (eDNA) and remote sensing (RS) technologies to develop a novel approach for predicting the spatial distribution of aquatic insects with high spatial resolution in a disturbed subtropical Dongjiang River system of southeast China. First, we screened thirteen RS-based vegetation indices that significantly correlated with the eDNA-inferred richness of aquatic insects. In particular, the green normalized difference vegetation index (GNDVI) and normalized difference red-edge2 (NDRE2) were closely related to eDNA-inferred richness. Second, using the gradient boosting decision tree, our data showed that the spatial pattern of eDNA-inferred richness could achieve a high spatial resolution to 500 m reach and accurate prediction of more than 80%, and the prediction efficiency of the headwater streams (Strahler stream order = 1) was slightly higher than the downstream (Strahler stream order >1). Third, using the random forest algorithm, the spatial distribution of aquatic insects could reach a prediction rate of over 70% for the presence or absence of specific genera. Overall, this study provides a new approach to achieving high spatial resolution prediction of the distribution of aquatic insects, which supports decision-making on river diversity protection under climate changes and human impacts.


Asunto(s)
ADN Ambiental , Tecnología de Sensores Remotos , Animales , Humanos , ADN Ambiental/genética , Monitoreo del Ambiente , Biodiversidad , Insectos , Ecosistema
11.
Environ Int ; 183: 108385, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38109832

RESUMEN

The impacts of the availability and spatial configuration of urban green spaces (UGS) on their cooling effects can vary with background climate conditions. However, large-scale studies that assess the potential heterogeneous relationships of UGS availability and spatial configuration with urban thermal environment are still lacking. In this study, we investigated the impacts of UGS availability and spatial configuration on urban land surface temperature (LST) taking 306 cities in China as a case study covering a multi-biome-scale. We first calculated the availability of surrounding UGS for urban built-up pixels in each city using a distance-weighted approach, and its spatial configuration was quantified through the Gini coefficient. Then, we employed various regression models to explore how the impacts of UGS availability and the Gini coefficient on LST varies across different LST quantiles and between day- and nighttime. The results revealed that UGS availability was negatively associated with both daytime and nighttime LST, while the Gini coefficient showed a positive impact solely on daytime LST, indicating that an adequate and equally distributed UGS contributes to lower environmental temperatures during the daytime. Furthermore, the impact of UGS availability on LST decreased during both day- and nighttime with increased background LST quantiles. Whereas the impact of the Gini coefficient increased only with daytime LST quantile levels, with its effect remaining almost insignificant during the night. Our findings provide new insights into the impacts of UGS on urban thermal environment, offering significant implications for urban green infrastructure planning aiming at lowering the urban heat island.


Asunto(s)
Calor , Parques Recreativos , Ciudades , Temperatura , China , Monitoreo del Ambiente/métodos
12.
Front Microbiol ; 14: 1276065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075914

RESUMEN

Introduction: Global warming is caused by greenhouse gases (GHGs). It has been found that the release of methane (CH4) from Arctic permafrost, soil, ocean, and sediment is closely related to microbial composition and soil factors resulting from warming over several months or years. However, it is unclear for how long continuous warming due to global warming affects the microbial composition and GHG release from soils along Arctic glacial meltwater rivers. Methods: In this study, the soil upstream of the glacial meltwater river (GR) and the estuary (GR-0) in Svalbard, with strong soil heterogeneity, was subjected to short-term field incubation at 2°C (in situ temperature), 10°C, and 20°C. The incubation was carried out under anoxic conditions and lasted for few days. Bacterial composition and CH4 production potential were determined based on high-throughput sequencing and physiochemical property measurements. Results: Our results showed no significant differences in bacterial 16S rRNA gene copy number, bacterial composition, and methanogenic potential, as measured by mcrA gene copy number and CH4 concentration, during a 7- and 13-day warming field incubation with increasing temperatures, respectively. The CH4 concentration at the GR site was higher than that at the GR-0 site, while the mcrA gene was lower at the GR site than that at the GR-0 site. Discussion: Based on the warming field incubation, our results indicate that short-term warming, which is measured in days, affects soil microbial composition and CH4 concentration less than the spatial scale, highlighting the importance of warming time in influencing CH4 release from soil. In summary, our research implied that microbial composition and CH4 emissions in soil warming do not increase in the first several days, but site specificity is more important. However, emissions will gradually increase first and then decrease as warming time increases over the long term. These results are important for understanding and exploring the GHG emission fluxes of high-latitude ecosystems under global warming.

13.
Environ Sci Technol ; 57(48): 19690-19701, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37930250

RESUMEN

Decoupling global economic growth from carbon emissions is essential for mitigating global climate change while maintaining continuous economic growth. Traditional production-side decoupling analysis alone is insufficient to capture the decoupling status between carbon emissions and the value added throughout global supply chains. This study investigates the decoupling status between value added and greenhouse gas (GHG) emissions during 1995-2019 from consumption and income perspectives. We find that the decoupling statuses of 17 regions (especially Russia, Australia, and Malta) show significant differences across multiple perspectives. For example, Malta's direct GHG emissions decreased with its GDP growth from a production perspective (i.e., achieved strong decoupling). However, its consumption-based GHG emissions increased with the growth of consumption-based value added (i.e., expansive negative decoupling). Moreover, most international pairs have not yet achieved strong decoupling from consumption and income perspectives. International multilateral cooperation is crucial for decoupling global GHG emissions from economic growth across global supply chains. This study provides insights into the decoupling between embodied GHG emissions and value added from consumption and income perspectives. The findings of this study can complement existing policies on global GHG emission mitigation and sustainable development.


Asunto(s)
Efecto Invernadero , Gases de Efecto Invernadero , Carbono , Dióxido de Carbono/análisis , Desarrollo Económico , China
14.
Environ Sci Technol ; 57(48): 20421-20430, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971949

RESUMEN

A flow-through anode has demonstrated high efficiency for micropollutant abatement in water purification. In addition to developing novel electrode materials, a rational design of its porous structure is crucial to achieve high electrooxidation kinetics while sustaining a low cost for flow-through operation. However, our knowledge of the relationship between the pore structure and its performance is still incomplete. Therefore, we systematically explore the effect of pore size (with a median from 4.7 to 49.4 µm) on the flow-through anode efficiency. Results showed that when the pore size was <26.7 µm, the electrooxidation kinetics was insignificantly improved, but the permeability declined dramatically. Traditional empirical evidence from hydrodynamic modeling and electrochemical tests indicated that a flow-through anode with a smaller pore size (e.g., 4.7 µm) had a high mass transfer capability and large electroactive area. However, this did not further accelerate the micropollutant removal. Combining an overpotential distribution model and an imprinting method has revealed that the reactivity of a flow-through anode is related to the catalytically active volume/sites. The rapid overpotential decay as a function of depth in the anode would offset the merits arising from a small pore size. Herein, we demonstrate an optimal pore size distribution (∼20 µm) of typical flow-through anodes to maximize the process performance at a low energy cost, providing insights into the design of advanced flow-through anodes in water purification applications.


Asunto(s)
Purificación del Agua , Dominio Catalítico , Electrodos , Purificación del Agua/métodos , Porosidad , Permeabilidad
15.
J Contam Hydrol ; 259: 104255, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852028

RESUMEN

Co-existence of microplastics, nanomaterials, and antibiotics may lead to intensified multifaceted pollution, which may influence their fate in soils. This study investigated the co-transport behavior of polystyrene microplastics (PS) and compound pollutants of graphene oxide (GO) and tetracycline (TC). Packed column experiments for microplastic with or without combined pollutants were performed in KCl (10 and 30 mM) and CaCl2 solutions (0.3 and 1 mM). The results showed transport of PS was facilitated at low ionic strengths and inhibited at high ionic strengths by GO with or without TC under examined conditions. Carrier effect of GO as well as the aggregation of PS in the presence of co-exiting GO or GO-TC could be the contributor. Although the existence of TC relieved the ripening phenomenon of PS and GO deposition due to enhanced electronegativity of sand media, the effect of GO on the PS transport has not been significantly impacted, indicating the dominant role of GO during cotransport process. Furthermore, the transport of PS was increased by TC owing to competition for deposition sites on sand surfaces. In turn, the transport of TC was mainly affected by PS whether graphene was present or not. The increase in electrostatic repulsive force (transport-promoting) and addition adsorption sites (transport-inhibiting) may be responsible for the observations. Our findings could improve understandings of complex environmental behaviors of microplastics and provide insight into investigation on cotransport of emerging contaminants under various conditions relevant to the subsurface environment.


Asunto(s)
Contaminantes Ambientales , Grafito , Microplásticos , Plásticos , Porosidad , Arena , Tetraciclina , Antibacterianos
16.
J Environ Manage ; 348: 119277, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839199

RESUMEN

The rapid urbanization has accelerated the destruction of regional ecosystems, triggering ecological risks and threatening sustainable development. Landscape ecological risk (LER) evaluation is an effective tool to mitigate such negative impacts. However, the existing evaluation systems exhibit certain subjectivity. Therefore, an improved LER evaluation method was proposed, which incorporates ecosystem services (ESs) to characterize landscape vulnerability. The method was validated using the Pearl River Delta urban agglomeration (PRDUA) as the study area. The results showed that the optimal grain size and extent for landscape pattern analysis in the PRDUA were determined to be 150 m and 6km × 6 km, respectively. The comparison results with the traditional LER evaluation method demonstrated the improved method's superior rationality and reliability. The hotspot analysis based on the Getis-Ord Gi* method revealed that the hotspots of LER were mainly concentrated in the densely populated areas of the south-central region of the PRDUA. The coupling coordination degree (CCD) between LERs and ESs showed four different levels of development in both temporal and spatial dimensions, generally dominated by moderately balanced development and lagging ESs, reflecting the unbalanced ecological environment and socio-economic development of the PRDUA. It is recommended that the ecosystems in the PRDUA be managed and protected separately according to the delineated Ecological Protection Area (EPA), Urban Built-up Area (UBA), and Urban Ecological Boundary Area (UEBA). This study can provide an important reference for regional ecosystem conservation and management.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Reproducibilidad de los Resultados , Urbanización , Ríos , China , Ciudades
17.
Chin Med ; 18(1): 131, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828528

RESUMEN

BACKGROUND: Silicosis is an important occupational disease caused by inhalation of free silica and is characterized by persistent pulmonary inflammation, subsequent fibrosis and lung dysfunction. Until now, there has been no effective treatment for the disease due to the complexity of pathogenesis. Fermented cordyceps powder (FCP) has a similar effect to natural cordyceps in tonifying the lung and kidney. It has started to be used in the adjuvant treatment of silicosis. This work aimed to verify the protective effects of FCP against silicosis, and to explore the related mechanism. METHODS: Wistar rats were randomly divided into four groups including the saline-instilled group, the silica-exposed group, the silica + FCP (300 mg/kg) group and the silica + FCP (600 mg/kg) group. Silicosis rat models were constructed by intratracheal instillation of silica (50 mg). Rats in the FCP intervention groups received the corresponding dose of FCP daily by intragastric gavage. Rats were sacrificed on days 7, 28 and 56 after treatment, then samples were collected for further analysis. RESULTS: FCP intervention reduced the infiltration of inflammatory cells and the concentration of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and transforming growth factor-ß1 (TGF-ß1) at days 7, 28, 56, and decreased the expression of collagen, α-smooth muscle actin (α-SMA) and fibronectin (FN) at days 28 and 56 in the lung of silicosis rats. FCP also decreased the immune response of Th1 and Th17 at days 7, 28, 56 and inhibited the enhancement of the Th2 response at day 56. CONCLUSIONS: FCP intervention could alleviate silica-induced pulmonary inflammation and fibrosis, the protective effect may be achieved by reducing Th1 and Th17 immune responses and inhibiting the enhancement of the Th2 response.

19.
Appl Opt ; 62(19): 5301-5305, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707235

RESUMEN

The detection of oil in water is of great importance for maintaining subsurface infrastructures such as oil pipelines. As a potential technology for oceanic application, an oceanic lidar has proved its advantages for remote sensing of optical properties and subsea materials. However, current oceanic lidar systems are highly power-consuming and bulky, making them difficult to deploy underwater to monitor oil in water. To address this issue, we have developed a compact single-photon Raman lidar by using a single-photon detector with high quantum efficiency and low dark noise. Due to the single-photon sensitivity, the detection of the relatively weak Raman backscattered signal from underwater oil was realized with a laser with a pulse energy of 1 µJ and a telescope with a diameter of 22.4 mm. An experimental demonstration was conducted to obtain the distance-resolved Raman backscatter of underwater oil of different thicknesses up to a distance of 12 m. The results indicate the single-photon Raman lidar's potential for inspecting underwater oil pipelines.

20.
J Environ Manage ; 345: 118849, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657293

RESUMEN

Current energy, water, and land (EWL) nexus research treats all resources equally, causing bias in complicated nexus studies. To make the analysis robust, we consider resource endowment and significance. Here, we provide a methodological framework where the urban industrial resource nexus strength is constructed and assign weights to resources according to policies, describing resource efficiency and representing it in ternary diagrams to assess the urban industrial nexus innovatively. Results showed that energy drives urban development under all weights, with energy resource efficiency exceeding 60%. From consumption-based accounting, energy continues to dominate most industries under physical weightings but emphasizes the significance of water and land. While, under economic weightings, land supplants energy's dominance in specific sectors. Setting weights helps understand resource interaction, establish synergy based on urban development objectives, and minimize robustness. Our findings provide quantitative evidence for assessing urban resource efficiency to highlight priority sectors for intervention in urban decision-making.


Asunto(s)
Industrias , Narración , Políticas , Remodelación Urbana , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...